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SUMMARY

The unsteady transonic equation for oscillating thin
wings is solved by a direct finite difference method in the
case where the steady flow affects only one coefficient in
the equation. Both concave and delta wing planforms are
solved and the program may be used for relatively arbitrary
planforms. . Both pitching and plunging modes are calculated
for a reduced frequency range from .2 to 1.0

The results are consistent with earlier asymptotic inves-—
tigations and are in numeric agreement within the order of
accuracy of these solutions. The thickness effect while

small, increases as reduced frequency decreases to .2
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NOMENCILATURE

Aspect ration 402/8

Dimensional body length

Unsteady pressure coefficient
Oscillation amplitude distribution
Wing thickness distribution
Reduced fréquency of oscillation
Generalized force coefficient
Local Mach number

Wing planform shape

Wing planform area

Non—-dimensional time

. Dimensional time

Dimensional free stream velocity

(fX + ikf) - downwash
Non—~dimensional Cartesian coordinates
Dimensional Cartesian coordinates
Ratio of specitfic heats

Oscillation amplitude

Thickness ratio of wing
Semi-span-to-chord ratio

Parabolic constant

Dimensional frequency

Transonic small perturbation potential

Steady state potential
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1. INTRODUCT ION

The prediction of unsteady flow requires taking into
account the corresponding steady flow. Landahl's [1] solutions
of steady flow completely separated the two effects thus
omitting the effect of body thickness on the unsteady behavior
of the body. Total inclusion of the terms omitted by Landahl
on the other hand gives a difficult equation of mixed type
Similar to the non-linear steady transonic equation which must
usually be solved by time consuming numeric methods. The only
simplification is that the flow-type regions are identified
in advance. But mixed type differencing is still required and
is further complicated by the presence of in-phase and out-of-
bphase components of the solution. 1In addition, a multip@icity
of solutions is needed for one body to account for several fre-
quencies and for various modes of motion. Thus a method which
is fast and yet provides some measure of the effect of the
steady flow is badly needed.

The present report describes a numerical solution procedure
of a simplified unsteady transonic equation which is very fast
and reasonably accurate and which takes into account many of
the effects of the steady flow field. The numeric solution of
this equation is accurate within a few bpercent and can be
~accomplished on an IBM 360/65 computer in less than one minute
per case (one frequency and one mode of oscillation). It is more
flexible than the older transonic box method[z] in that it
accommodates rather arbitrary planform shape and is easily
capable of handling variable local Mach number effects from
the steady flow.

2. PROBLEM FORMULATION

Consider a rigid pointed wing which performs harmonic
pitching oscillations of small amplitude in a steady uniform
transonic flow. It is required that the wing be smooth and
sufficiently thin that the conditions for the validity of small

perturbation theory are satisfied.
1



Z = ¢ g(x,y) sgn 2 + 5 Re (e

With the flow directed along the positive x axis and the
wing oriented along the x axis, we may introduce non-dimensional
variables x = bx, y = by, 2 = bz, and t = (Uo/b)? where b is
the body length, U0 is the free stream speed and the bar coordi-
nates are the physical coordinates. The steady state position
of the wing, which for convenience is assumed to be symmetric,
is then as shown in Figure 1. Denoting the thickness ratio by
€, the requirement that the wing be thin becomes e¢¢l.

Slnce ‘the shock strength is or ‘order 62 ‘we may ighdte
the 1rrotat10nality effect of the shock ef fect in the solution
up to order 62 ine. Consequently, we may assume the e;istence
of a ve1001ty potenflal $ such that the X, ¥ and z cémﬁonents
of the ‘flow ve1001ty are (1 + @ ), &, and.¢ ‘respectivelyf
It has been shown (e.g. by Landahl[ly, thit ihe potentia1'®

must satisfy the_followxng equation:

LT 2 T 4 . . . 2 [ . i
(1 - M) Gy F @yy + o, 2M Pt o ‘ (D
2 2
Consi‘%enf with the réquiremeht that the wiﬁg perform ..
small 050111at10ns of amplltude B about its steady State
p051t10n, we may wrlte the equatlon for p01nts on the w1ng as

e le gy - (a

where g(x,y) is the steady state wing shape of order 1 and
f(x,y), also of order 1, represents the change in shape due
to oscillation. k is the reduced frequency of oscillafidn
equal to Wb/U, where w”is the physical fregquency. We assume
the oscillation to be a small disturbance to the steady state
solution, sO0 €35, | .

The condition of tangential flow on the body becomes:



o = eg_sgn z + 5 Re ((f_+ ikt)e Y 4+ Ge,s) 3)

z body

where G(e,5) = @_]. (g sgn z + B Re”(f'gefkt)fé
Y {body y L A
Letting ¢ denote the semi-span to chord fatio, we let
¥y = yv/0 in the last term in (3).
. -1 _ )
G(e,5) =0 ] (e 0 " go-sgnz +56 0 1 R,e(elkt =) ) (4)
. y body y y

Then, if the wing is assumed to be nearly planar so
that o>>e, (4) is negligible and the boundary condition (3)
becomes

ikt}

® = Re {e'gX sgn z + 5 (f, + ikf) e (5)

% Jvody

Moreover, we assume that 5 is sufficiently small that
(5) may he evaluated on z = £ 0 instead of (2).

The non-linear term in equation (1) is the fundamental
difficulty in solving the above problem. Following the
ideas of Lin, Reig¢sner, and Tsienl®], Landanl showed that the
non—-linear term would be negligible for k sufficiently high,
i.e. (kyyoe 1nU_1 e_l/s).
and leaves out completely the effect of body thickness as the

This restricts the range of validity

equations for the unsteady part of the potential are then
completely independent of the steady state solution. Teipelpﬁ]
extended an approach used by Oswatitsch and Keune[5] for steady
sonic flow by approximating the ¢,  term with a parahgiic
constant ['jtransmitting the effect of the steady flow into the
unsteady equation, This method has been exploited by Kimble,
Liu, Ruo and Wurﬁ} to obtain asymptotic sclutions for léw
agspect ratio pointed wings.

Instead of this approach ¢ may be represented as the sum
of a steady potential di and an unsteady potential &/ and
assuming the unsteady flow is:a smallsperturbationsofothéisteady

X . 1
flow gives, as 1in [ ],



2 + By By )

X 2xx

- M) Boxx = M v+ 1) B1xxP2x

2 9 B .
+ ¢2yy * Bopy T 2N Boyp T~ W By =ﬂ0 ®)

In sonic flow 1 ~ M = (lex). it has become common
practice to ignore the term ¢1x¢2xx in comparison to
ﬁlxxﬁzx' This:;r reflects in part the vanishing of the receding
wave as M»1l. Kimble and WuF7J carried out numerical solutions
of two dimensional wings with and without the term élxﬁzxx
using Spreiter'sfs] steady state approximate solutions and
found less than one-half percent difference in the solutions,
well within the order of numeric approximation. This approxi-~
mation requires further study to place it on a firmer physical
foundation. The resulting governing equation for ﬁz is

2 2., 2 .
(M O+ 1 By ] oy = Poyy * Pogy = 2W B4y = Mgy 7y

Letting ¢2 = 5 Re (p elkt) and Vz denote the Laplacian with

respect to y and z we have finally:

2 C D 2 2 2 |
[M™ (y + 1) @1 T2MIKE] o = V7 @ + KM ‘ (8)
with boundary conditions
9, (X,5, +0) = (£_+ ikf), |y| gs(x) | (9)

(0] (X,Y, + 0) =0 ’ IYI Z S(X)
¢ (0,y,z) =0, Z:_?_O

lim ¢ =0, x > 0.

Y2+Zz—}oo



3. SOLUTION METHOD

Ignoring the fact that the leading coefficient is complex,
equation (8) resembles a heat equation with x playing the role
of time and spatial variables y and z. (It is actually a
biharmonic wave equation if the complex coefficient is eliminated-
by differentation). This suggests an aﬁ@ptation of the Crank-
Nicolson method for solution.

The boundary condition on Py, would behavegas if one were
heating a plate at the edge over an expanding region. This
causes severe difficulties in the use of a difference method
mesh which is uniform in x. The mesh would not match the wing
planform edges exactly (Figure/® 2a). Nonetheless, this approach
was completely implemented and failed badly. Severe oscillations
were present in the numeric solution on the wing surface. These
oscillations which are normally a sign of instability in the
nureric method did not extend into the field. In addition, a
Von-Neumann stability analysis showed the field equations were
stable. A similar difficulty was experienced with the transonic
box method[2] and was partially repaired by an edge correction.
Various corrections were tried but a difference scheme can only
recognize a change of the boundary to an accuracy the same as
mesh size., This approach was therefore abandoned.

A fransformation used by Landahl[lJ to transform a delta
wing problem gave the fundamental idea for a means to transform
the problem in such a way that the mesh aligned itself with
the planform edges thus eliminating the boundary instability
problen. '

Let y

ys (x) (10)

Z = zs(x)

i

Then the equation (8) becomes)

a[schx~5's('fcp§+5cog)]+f35 ¢ =V 9 - an
5 ‘



2 .
where o~ = {Mz (v + 1} ﬁlxx +2M ki] and B = k2M2 while

w

fx + ikf
The boundary conditions (8) become
Oy (X,¥, + 0) = w's 17| < 1 (12).

o (xs}-s +0) =0 |-§l —>— 1

and the other boundary conditions are unchanged. See
figure 2b. 7

This problem was programmed using a relatively straight
forward adaptation of the Crank-Nicolson method for variable
coefficients and complex . The stability was excellent and
the previous difficulty completely overcome . Unfortunately,
an iterative method of solving the equations at each X step
was used. The amplification factors found by the Von-Neumann
analysis approached one for x near the trailing edge and
ﬁlxx = 0. The iteration procedure took more and more 1terat10ns
to converge as x approached 1.0. Underrelaxataonnleadatoluﬁ
eventual convergence but only after consuming a large amount
of computer time. The effects were not as severe with ﬁlxx £ 0
but efficiency still suffered. |

Since reprogramming was again necessary to use a direct.
elimination procedure, an additional transformation was also
tried to reduce storage requirements. Many mesh points must
be used off the wing in the lateral as well as the vertical
direction to take account of the field efiects. The transfor-
mation

- = = (13)
¥ = 8in ¥ cosh Z

Z =cos VY sinh 2

%

eliminates the need for mesh points displaced laterally off the
wing and in addition smoothesathe edge singularity in the
derivatives of ¢ giving even better numeric accuracy there.

See figure 2c.



The equation and boundary conditions (with the double
bars dropped) hecome

. . ' "
2 [(cos2 y + sinh2 Z) 52 9, ~ S8 (sin (2y)‘@y/2 + sinhi (2z) ¢Z/2)J
2 .2 2 2
+ g (cos” y + sinh” z) s ¢ =V ¢ (14)
o, (%,¥,0) =8 w cos y, |y|'< % (15)
T
CP(X’:,:E’Z)=O’ ZZO
P (O’YJZ) =0 , z 20’ lyl S %
limg =0, x>0, |y]< 3

Z>oo

This method gave good stability and accuracy of the in-
phase part of @. However, the out-of-phase part of g is Qﬁé}
orders) of magnitude smaller than the in~phase part. Without
fine mesh the out-of-phase part was lost in noise. To correct
this ¢ was split into two parts, one a known function related
to the slender body solution, and the other@;m(oﬁmcomparable
magnitudes: jin both in and out-of-phase parts.

P & ur-l-\s W COS (y)é;_z (16)

This was substituted into (14) and (15) and only V¥ was computed
numerically resulting in very accurate solutions for both in

and out-of-phase parts of ¢o.

4. PRESSURE COEFFICIENT AND GENERALIZED FORCES

The pressure coefficient is computed using central differences

to approximate the derivatives of ¢ from

Cp = j2‘(@x + ika) : (17)



We define the generalized aerodynamic force coefficients
by
4 . .
= —— i . k T, 18
Lij = Fs, fsf L vy,x * ik9;] 1, dxdy (18)
Z=0)
where S is the wing planform area, the displacement distribu-
tion function for harmonic oscillations in mode j is given by
fj(x,y) cos kt (fj is of order 1), and ¢; is the unsteady
potential due to mode i. The integrals were evaluated (after
integration by parts to eliminate derivatives) by Simpson!s

rule.

5. RESULTS
5.1 Comparison With Transonic Box Method

The program was tested for a case solved by Redemich
and Andrew[z] by the transonic box method. The planform
was a delta wing of aspect ratio 1.5 oscillating in plunge
at a reduced frequency k of .5 . Results are plotted in
Figure 3 and show agreement to within about 3%. The finite
difference solution uses 16 points in the x direction and. |
8 in the y direction. 1In a sense this is comparable to 128
boxes in the transonic box method. The transonic box solution
shown, however, required approximately 300 boxes on the wing.
The far field was approximated by setting the correction
potential to O at z approximately 4. This means that at
z = 4 the potential is forced to agree with the slender body
solution. A value of z = 8 caused only about one percent
change in the solutionswwgereas z, = 2.0 caused much more severe

variatiom{

Simélar tests were made with varying mesh sizes. Doubling
the number of mesh points in any direction again caused only

about one percent variation in the solutions,



5.2 The Delta Wing With Thickness Effect.

The generalized moments L and L22 were computed for a

delta wing of aspect ratio 1.511n pitching and plunging modes
at reduced frequencies .2, .5, .8 and 1.0 with and without a
thickness effect. '

The thickness effect chosen for this study was based on
earlier work of Liu and Ruo[g] which extended the earlier
work of Teipel mentioned above. It was assumed that ¢ = .0683,
¢ = .375 and that the wing was a biconvex with simple wedge
- chord sections. This implies that  the equivalent body is a
cone of base area .0683. According to [9] this gives a
parabolic constant f = .9D which serves as an approximation
to the steady state term (y + 1) Mlﬁlxx' The flow was
assumed to be sonic (M = 1) everywhere for this report.

There is no limitation on the program (or its efficiency) to
constant values of (y + 1) M ﬁiﬁx’ howevér. ‘Better data can
be incorporated in future studies.

The results are shown in Figures 4 and 5. Note the expanded
scales. The effect of thickness is seen to increase as reduced
frequency decreases which is in agreement with past asymptotic
analysis of thickness effect[g]’ [6]. The neaf agreement with
and without thickness effect at k = 1.0 is rather coincidental
although as frequency increases, thickness effect will vanish.
The accuracy suffers somewhat near k = 1.0 because of the
redatively large mesh size,

The phase angle is affected only very little by thickness.
Note that L22 seems tonshow very little thickness effect. This
can be traced to the fact that ¢ is not normalized by k as it
is in the plunging case. We suggest using the downwash w = ikx
and normalizing w to accurately account for thickness effect

in this case.



5.3 The Concave Wing With Thickness Effect

To illustrate the capabilities of the method to handle
general planforms, a concave wing with planform given by

sx) = o (x + x2)/2

and ¢ = .4167 corresponding to aspect ratio 2.0 was chosen.

The results show a slower onset of thickness effect with
decreasing frequency and a slower decay as frequency increases.
The first tendency is again consistent with gualitative trends
noted in the earlier asymptotic investigation at low frequency.
The second tendency has not been seen before and requires
further investigation. Again phase angle is not greatly
affected and the pitching results are largely swamped due

to lack of normalization.

5.4 Pressure Coefficients

Pressure Coefficients were calculated for both wings
oscillating in the plunging mode at k = .2. The amplitudes
of pbressure show little change when thiékness effect is
included. Thickness effect is largely reflected in rather -
significant changes in the phase angles. This emphasizes the
leportance of calculating the out-af-phase part of o correctly
since this part almost totally determines the phase shift due

toésthickness effect.

6. CONCLUDING REMARKS AND RECOMMENDAT IONS.

An efficient and accurate method has been developed for
solving a simplified version of the unsteady transonic equation.
The equation may be modified to include the effect of ¢1
wherever this is not negative without 1nterfer1ng with eff101€ncy:‘
or accuracy. Such an approach is reasonable in sonic flow when
the recedlng wave effects can be ignored. In consequence wake
influence lsalgnored and shocks must be weak. Nevertheless, 4
when the sonic pocket extends over most of the wing, these

assumptions are very nearly fulfilled. The present method
' 10



can easily account for variable local Mach number and rather
arbitrary planform so long as the basic assumptions are
fulfilled. '

Additional convergence studies in the case of curved
planforms would be valuable since accuracy is somewhat affected
by such changes. The present program may be modified to use
approximately 70% less storage and about the same proportion
less time to make such studies feasible.

It is recommended that pitching results be compared using
a downwash.fuhction W o= ikx'rather than the more conventional’
w = 1 + ikx since the present procedure gives solutions
largely dominated by the plunge-like case w = 1. Comparison
of results calculated with w = ikx will allow normalization
by frequency k and will more accurately reflect differérences
due to thickness, planform, and local Mach number.

11



Figure 1. Nomenclature
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Figure 3.

Real And Imaginary Parts Of the Unsteady Potential
©® In The Plumging Mode For An Aspect Ratio 1.9
Delta Wing At k = 0.5y Chordwise Distribution For

Y = 0.125.
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Figure 12. Amplitude Of Pressure Coefficient For A Plunging - R
) Delta Wing. : ' . S
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